my photo

吕凯风 Kaifeng Lyu

我是一名普林斯顿大学计算机系的博士生,计划明年毕业。我很荣幸能在导师 Prof. Sanjeev Arora 的指导下进行理论研究。

我本科就读于清华大学姚班,于2019年毕业并取得计算机科学与技术工学学士学位。本科时,李建教授是我学术上的导师与引路人。

近况:我将于 2025 年秋季入职清华大学交叉信息院任助理教授。

会议论文

Understanding incremental learning of gradient descent: A fine-grained analysis of matrix sensing
  • Jikai Jin
  • Zhiyuan Li
  • Kaifeng Lyu
  • Simon S. Du
  • Jason D. Lee
Why (and When) does Local SGD Generalize Better than SGD?
  • Xinran Gu*
  • Kaifeng Lyu*
  • Longbo Huang
  • Sanjeev Arora
Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction
  • Kaifeng Lyu
  • Zhiyuan Li
  • Sanjeev Arora
On the SDEs and Scaling Rules for Adaptive Gradient Algorithms
  • Sadhika Malladi*
  • Kaifeng Lyu*
  • Abhishek Panigrahi
  • Sanjeev Arora
New Definitions and Evaluations for Saliency Methods: Staying Intrinsic, Complete and Sound
  • Arushi Gupta*
  • Nikunj Saunshi*
  • Dingli Yu*
  • Kaifeng Lyu
  • Sanjeev Arora
Gradient Descent on Two-layer Nets: Margin Maximization and Simplicity Bias
  • Kaifeng Lyu*
  • Zhiyuan Li*
  • Runzhe Wang*
  • Sanjeev Arora
Towards Resolving the Implicit Bias of Gradient Descent for Matrix Factorization: Greedy Low-Rank Learning
  • Zhiyuan Li
  • Yuping Luo
  • Kaifeng Lyu
(按字母序排序)
Reconciling Modern Deep Learning with Traditional Optimization Analyses: The Intrinsic Learning Rate
  • Zhiyuan Li*
  • Kaifeng Lyu*
  • Sanjeev Arora
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
  • Kaifeng Lyu
  • Jian Li
Theoretical Analysis of Auto Rate-Tuning by Batch Normalization
  • Sanjeev Arora
  • Zhiyuan Li
  • Kaifeng Lyu
(按字母序排序)
Fine-grained complexity meets IP = PSPACE
  • Lijie Chen
  • Shafi Goldwasser
  • Kaifeng Lyu
  • Guy N Rothblum
  • Aviad Rubinstein
(按字母序排序)
Single-Source Bottleneck Path Algorithm Faster than Sorting for Sparse Graphs
  • Ran Duan
  • Kaifeng Lyu
  • Hongxun Wu
  • Yuanhang Xie
(按字母序排序)
Learning gradient descent: Better generalization and longer horizons
  • Kaifeng Lv*
  • Shunhua Jiang*
  • Jian Li
(默认按贡献排序;星号 * 表示贡献相同)

Professional Services

  • Conference Reviewer: ICML (2020-2023), NeurIPS (2020-2023), ICLR (2022,2023), TPAMI, COLT (2020), AAAI (2020), KDD (2022).
  • Journal Reviewer: JMLR, TPAMI, AIJ.
  • Organizer, Yao Class Seminar, Tsinghua University (Fall 2019, Fall 2020, Spring 2021).

Universal Online Judge

  • 为了促进信息学竞赛生之间的交流,我于 2014 年创办了 Universal Online Judge (UOJ)。
  • UOJ 是一款能够自由测评传统和非传统 OI 题的 OJ。自创办起,UOJ 定期举办比赛,主要由每年的国家集训队成员组织。
  • [链接] [GitHub] [文档]